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The Fermi line of bilayer graphene at zero energy is transformed into four separated points positioned
trigonally at the corner of the hexagonal first Brillouin zone. We show that as a result of this trigonal splitting
the minimal conductivity of an undoped bilayer graphene strip becomes anisotropic with respect to the orien-
tation � of the connected electrodes and finds a dependence on its length L on the characteristic scale �
=� /�k�50 nm determined by the inverse of k-space distance of two Dirac points. The minimum conductiv-
ity increases from a universal isotropic value ��

min= �8 /��e2 /h for a short strip L�� to a higher anisotropic
value for longer strips, which in the limit of L�� varies from �7 /3���

min at �=0 to 3��
min over an angle range

���� /L.
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The recent realization of isolated graphene,1–3 a two-
dimensional �2D� hexagonal lattice of carbon atoms, and its
bilayer4 has been followed by intensive studies which ex-
plored many intriguing properties of these new carbon-based
materials.5 They are zero-gap semiconductors with their val-
ance and conduction bands touching each other at the corners
of the hexagonal first Brillouin zone known as Dirac points.
This specific band structure in connection with the pseu-
dospin aspect which characterizes the relative amplitude of
the electron wave function on two different sublattices of the
hexagonal structure has given the carriers a pseudorelativis-
tic chiral nature.2,4 The chirality is believed to be the origin
of most of the peculiarities of quantum transport effects in
single and bilayer graphenes.5–7

One of the most important observations in graphene sys-
tems is the existence of a nonzero minimal conductivity in
the limit of vanishing carrier density �at Dirac points�.2 This
effect which had been predicted theoretically long before the
experimental synthesis of graphene8 has been the subject of
several recent theoretical investigations, and in most studies
a universal value �0

min= �4 /��e2 /h for minimum conductivity
of monolayer graphene was found.9–14 Although the theoret-
ical value is � times smaller than the value measured in the
early experiments, more recent experiments have confirmed
the predicted universal value �0

min for wide and short
graphene strips.15,16

For bilayer graphene the minimum conductivity is also
measured to be on the order of e2 /h.4,17 Despite the similar-
ity of the chiral nature in single and bilayer graphenes, the
low-energy spectrum in the bilayer is drastically different
from the linear dispersion of massless Dirac fermions in the
monolayer. The spectrum in bilayer, which has a parabolic
form at high energies, acquires strong trigonal warping at
low energies and undergoes the so-called Lifshitz transition
at which the Fermi line is broken into four separated
pockets.18 In the limit of zero Fermi energy the pockets
shrink into the points of which one is located at the Dirac
point and three others positioned around it in a trigonal form
�see Fig. 1�a��. The aim of the present Brief Report is to
study the effect of this Dirac point trigonal splitting on the
minimum conductivity of the bilayer, which will also allow
us to distinguish between the effects of masslessness and

chirality. We employ the realistic model of a wide undoped
bilayer strip of length L as the scattering region connecting
two highly doped regions as electrodes. Using a full Hamil-
tonian which takes into account all intralayer and interlayer
hoppings between nearest-neighbor atomic sites, we find that
the effect of the trigonal splitting in the minimum conductiv-
ity depends on L as compared to a characteristic length �
=� /�k�50 nm determined by the inverse of the k-space
separation �k of two split Dirac points.

For a short strip of L�� the effect of trigonal splitting is
negligible and ��

min= �8 /��e2 /h, which is twice the minimum
conductivity of a monolayer showing that in this limit the
bilayer behaves as two independent single layers connected
in parallel. For a finite length strip the minimal conductivity
increases above ��

min and finds a dependence on the angle �
between the orientation of the electrodes and the hexagonal
lattice symmetry axis. We find that for a long strip L�� the
anisotropic minimum conductivity �min��� increases from
�7 /3���

min at �=0 to 3��
min over an angle range ���� /L.

Our results reveal the importance of trigonal splitting of the
zero-energy spectrum on the minimal conductivity of bilayer
graphene.

To this end, there have been few theoretical investigations
devoted to the minimal conductivity in bilayer graphene.19–24

In Ref. 21 a wide bilayer sheet with a constant perpendicular
interlayer hopping is considered to connect two heavily
doped electrode regions. This model, which ignores the
trigonal splitting, results in a minimum conductivity �min

=��
min,20,21 establishing the fact that for high-energy electrons

injected from the metallic electrodes, the constant interlayer
hopping does not cause any significant effect and the bilayer
sheets behave as two monolayers in parallel. On the other
hand, authors of Refs. 22 and 23 have taken into account the
effect of strong trigonal warping within, respectively, the
Born approximation and Kubo formula. They have found an
isotropic and constant minimal conductivity �24 /��e2 /h,
which is three times larger than ��

min obtained in Refs. 20 and
21. However, we note that the models employed in Refs. 22
and 23 do not include the effect of electrodes which are
present in a realistic experimental setup for conductivity
measurement. This could be in particular important in
graphene contacts due to the chirality of the carriers and the
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resulting Klein tunneling phenomena.6,7 Our study, taking
into account both the trigonal splitting and the electrode ef-
fect, reveals anisotropy of the minimal conductivity and its
dependence on L /� which also clarifies the origin of the
disagreement between the two above predictions.

We consider a ballistic bilayer graphene sheet in x-y plane
consisting of an undoped strip of length L and width W and
two heavily doped regions for x�0 and x	L on top of
which bias electrodes are deposited. The interfaces between
electrode regions and bilayer strip are oriented parallel to y
axis making an angle � with respect to the symmetry axis of
the bilayer lattice as indicated in Fig. 1�a�.

Bilayer graphene is made of two coupled single-layer
graphene with different sites A1,B1 in the bottom layer and
A2,B2 in the top layer. The two layers are arranged accord-
ing to Bernal stacking in which every A1 site of the bottom
layer lies directly below an A2 site in the top layer, as shown
in Fig. 1�a�. Within the tight-binding model of graphite5,24

we consider all the nearest-neighbor hoppings. The intralayer
hoppings between the sites A1-B1 and A2-B2 are param-
etrized by the single energy t�3 eV. There are two types of
interlayer hoppings: A1-A2 and B1-B2 which are character-
ized by the energies t��0.4 eV and t3�0.3 eV, respec-
tively. The other possible hoppings including 
4 between
A1-B2 and A2-B1 have much smaller values and are not
considered.24 In addition since the main effect of 
4 is to
break electron-hole symmetry, it cannot affect minimal con-
ductivity significantly.25 The given values for the hopping
energies are well-known typical values for graphite; how-
ever, they are mostly used in the graphene literature.24,25 For
bilayer graphene itself some experiments have reported dif-
ferent values for t3�0.1–0.2 eV,26 which is still on the or-
der of 0.1 eV and will not change our main results.

The resulting tight-binding Hamiltonian is written in k
space. The hexagonal first Brillouin zone of bilayer graphene
contains six corners. Among them two are inequivalent
specifying the valleys K and K�. In the absence of intervalley
scattering,5 the valleys are degenerate and it is sufficient to
consider only one valley. Low-energy excitations with 2D
wave vector k��k ,q� around one of these valleys, say valley
K, is governed by the Hamiltonian of the form18

H�k� =	
0 �vk− t� 0

�vk+ 0 0 �v3k−

t� 0 0 �vk+

0 �v3k+ �vk− 0

 , �1�

which operates in the space of four-component spinors of the
form �=eikx+iqy�A1 ,B1 ,A2 ,B2�, where each component
determines the wave-function amplitude at the corresponding
site of the bilayer unit cell. The characteristic velocities v
=3ta /2� and v3=3t3a /2� �a is the lattice constant� are as-
sociated with the hopping energies t and t3, respectively. We
note that the complex wave vectors k�=e�i��k� iq� depend
on the misorientation angle �.

The quasiparticle spectrum ��k ,q� is obtained from the
eigenvalue equation of Hamiltonian �1�, which reads

��2 − ��vk�2�2 − �2�t�
2 + ��v3k�2� + ��v3k�2t�

2

= ��v�2t��v3�e3i��k − iq�3 + e−3i��k + iq�3� . �2�

It is clear that the right-hand side of this equation produces
trigonal warping of constant-energy lines, with a strength
given by the ratio �=v3 /v. Figure 1�b� shows constant-
energy lines for three energies � /�L=0, 0.8, and 2, where
�L= t��2 /4 is the characteristic energy at which the Lifshitz
transition takes place. While at �=2�L the energy line, de-
spite its strong trigonal warping, is a continuous line, at �
=0.8�L it breaks into four pockets whose enclosed area de-
creases with lowering energy and finally at �=0 shrinks into
the four points. The central point is located at �k�=0 and the
other three leg points at a constant distance �k�=�k
= t�v3 /�v2 from the center and in the directions determined
by angles �n=arctan�qn /kn�=�+2�n−1�� /3, where n=1, 2,
and 3 �see Fig. 1�b��.

Dirac point splitting will have two main effects on the
transport of carriers through the bilayer strip. First it intro-
duces a length scale �=� /�k=��v / t���50 nm as the ef-
fective range of the scattering potential which could mix the
states at the four Dirac points. This length scale is 1 order of
magnitude larger than interlayer coupling length l�=�v / t�

introduced in Ref. 21. For realistic graphene samples of a
few 100 nm length, L	� and the variations over this length
scale should be taken into account. The potential profile var-
ies over the length L of the strip. For L�� the scattering
potential is short enough to cause strong inter-Dirac point
scattering and consequently the scattering states at these
points are mixed. On the other hand, for L�� the states of
the Dirac points are well separated and do not mix. Second,
it causes anisotropy of the scattering states due to the orien-
tation of the leg points. As we will explain in the following,
these effects result in a length-dependent anisotropic mini-
mal conductivity for the bilayer strip.

Within the scattering formalism we find the transmission
amplitude of electrons through the bilayer strip. An elec-
tronic state is specified by the energy � and the transverse
wave vector q, which are conserved in the scattering process.
We find the eigenstates of Hamiltonian �1� in three regions of
left �x�0� and right �x	L� electrodes and the bilayer strip
�0�x�L�. In general for a given � and q there are four
values of longitudinal momentum k �solutions of Eq. �2��

q

k
θ

b)

ε
ε
ε = 0

= 2
= 0.8 εL

εL

FIG. 1. �a� The bilayer lattice structure projected onto the x-y
plane. Bonds between A1-B1 �A2-B2� in bottom �top� layer are
indicated by dashed �solid� lines; � is the angle between the lattice
symmetry axis and the y axis. �b� Constant-energy lines around the
corner of the hexagonal first Brillouin zone for different energies
�measured in units of Lifshitz transition energy �L�1 meV� near
the neutrality point.
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with four corresponding eigenstates in each region.
Inside the strip at the neutrality point �=0, the four solu-

tions �ki , i=1, . . . ,4� of Eq. �2� have the form

k1,2 = k3,4
�

= iq + ��/2��exp�− 3i���1 � �1 + 8iq� exp�3i��/�� .

The corresponding eigenstates are given by

�1,2 = eik1,2x+iqy0,−
e−i�

l�

,k1,2 − iq,0� , �3�

�3,4 = eik3,4x+iqyk3,4 + iq,0,0,−
ei�

l�

� . �4�

In general for a given q all four states inside the strip are
evanescent having complex ki �i=1, . . . ,4� with exceptions
of the Dirac points with q0=0 and qn= �� /��sin��n�
�n=1,2 ,3� at which two of the ki’s are real representing
propagating states in the strip.

Inside the highly doped electrode regions a very large
potential −U0 is applied. We assume that for all states con-
tributing in transport �vq�U0 provided that U0 is much
larger than all other energy scales in Hamiltonian �1�. By this
assumption the longitudinal momenta of all states inside
electrode regions have a constant magnitude k0=U0 /�v�q.
Inside each electrode for certain q there are two right-going
eigenstates ��

R =exp�ik0x+ iqy��1,exp�−i�� , �1, �exp�i���
and two left-going eigenstates ��

L =exp�−ik0x+ iqy�
�1,−exp�−i�� , �1, �exp�i���.

For two left-going incident states from the left electrode
�x�0� the scattering states in three different regions have the
form

�� = �
��

R + r+
��+

L + r−
��−

L , x � 0,

�
i=1

4

ci
��i, 0 � x � L ,

t+
��+

R + t−
��−

R, x 	 L ,
� �5�

where the coefficients ci
� and reflection and transmission

amplitudes r�
� and t�

� have to be determined by imposing the
continuity condition of the wave functions at the boundaries
x=0,L.

We calculate the conductance at zero temperature from
the Landauer-Buttiker formula,

G

G0
=

W

2�
�

−�

�

T�q�dq , �6�

where T�q�= �t+
+�2+ �t+

−�2+ �t−
+�2+ �t−

−�2 is the sum of transmission
probabilities of the two states �� and G0=4e2 /h is 4 times
the conductance quantum to take into account the valley and
spin degeneracies. The conductivity of the bilayer strip is
obtained by the relation �= �L /W�G.

We have obtained T�q� as a function of the length L and
the orientation angle �. For a short strip with L�� the trans-
mission probability takes the form

T�q� =
1

cosh2��q − qc�L�
+

1

cosh2��q + qc�L�
, �7�

which shows two maxima at the point q= �qc
= �arcsinh�L /2l�� /L. Around these points T�q� decays ex-
ponentially within a scale of the order �q�1 /L which is for
a short strip much larger than �k=� /�. Thus T�q� is almost
constant within the scale �k which implies that the Dirac
point splitting and the associated anisotropy of the spectrum
are not revealed in the transmission of the carriers. This is
the result of strong mixing of the states around the four Dirac
points via scattering through the bilayer strip. The resulting
isotropic minimum conductivity ��

min=2�0
min which is twice

of the minimum conductivity for a single layer.
For a finite L /� the minimum conductivity increases

above ��
min. This is shown in Fig. 2 where we have plotted

�min as a function of L /� for different orientations �. For
L /��1 the increased minimum conductivity finds a � de-
pendence as the result of trigonal splitting of the Dirac point.
In this case the anisotropy of �min is spread over the range
0���� /6. We note that the increase in �min is associated
with an oscillatory variation due to quantum interference ef-
fects in the bilayer strip. Increasing L /� further to approach
the limit of a long strip L�� the range of anisotropy be-
comes narrower. In this limit and for the angles not too close
to �=0,� /6 we obtain the following relation for the trans-
mission probability:

T�q� = �
n=0,3

1

cosh2��n����q − qn����L�
, �8�

where the summation is taken over four transverse coordi-
nates of the Dirac points, qn, with �0=1 and �n���=3 /
�5−4 cos�2�n�� for n=1,2 ,3. This result shows that the
transmission probability consists of four resonant peaks at
the points qn, whose width is on the order of �q�1 /L
��k. The effect of the Dirac point splitting is, thus, revealed
in the transmission process. For � approaching 0 and � /6 the
transverse coordinates of the two resonant peaks q0→q1 and
q1→q2, respectively, and the corresponding peaks overlap.
For these cases Eq. �8� is not applicable since we have con-

FIG. 2. Minimal conductivity in units of ��
min= �8 /���e2 /h� of a

wide strip of undoped bilayer graphene versus its length L for dif-
ferent orientations � of the hexagonal lattice symmetry axis with
respect to the electrodes. L is measured in units of �=� /�k with �k
being the k-space distance of two trigonally split Dirac points.
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sidered four Dirac points contributed independently in this
equation. In the case of �=0 from Eqs. �5� and �6� we find
that the contribution of the conductivity from the peaks at
q0=q1=0 is on the order of �2e2 /h which is negligibly small.
So there are only contributions from the points q2 and q3
which result in a minimum conductivity ��=0

min = �7 /3���
min. In

contrast to the �=0 case, for �=� /6 the overlapped resonant
peaks make the same contributions as two independent
peaks. Thus, for all orientations 0���� /6, except the
angles ��� /L, we can use Eq. �8� for T�q� which leads to
the constant minimal conductivity �min=3��

min �see Fig. 2�.
This means that �min is anisotropic over the vanishingly
small range ���� /L with an amplitude ��min= �2 /3���

min.
For L�� the conductivity has isotropic value �min=3��

min, as
is expected from the D6h lattice symmetry group of the bulk
bilayer graphene. On the other hand for a short strip L��,
the conductivity becomes isotropic since the change in the
momentum upon scattering ��1 /L� is much larger than the

k-space separation �1 /�� of the Dirac points and thus their
anisotropy will not be revealed anymore.

In conclusion, we have studied conductivity of a wide
strip of undoped bilayer graphene which connects two highly
doped electrode regions. We have shown that due to the
trigonal splitting of Dirac points at zero Fermi energy, the
minimal conductivity �min of the strip finds a dependence on
the lattice symmetry axis orientation � with respect to the
electrodes. The anisotropy of �min depends on the length of
strip L as compared to the characteristic length scale �
=� /�k�50 nm determined by the inverse of the k-space
separation of two Dirac points. For a short strip of L��,
�min takes an isotropic universal value ��

min= �8 /��e2 /h. For
longer strips the minimal conductivity increases above this
value in an anisotropic way. We have found that in the limit
of L�� the anisotropic minimal conductivity grows from
�7 /3���

min at �=0 to 3��
min when the orientation is changed

by the angle ���� /L.
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